Search results for "Sobolev space coefficients"

showing 1 items of 1 documents

Stochastic differential equations with coefficients in Sobolev spaces

2010

We consider It\^o SDE $\d X_t=\sum_{j=1}^m A_j(X_t) \d w_t^j + A_0(X_t) \d t$ on $\R^d$. The diffusion coefficients $A_1,..., A_m$ are supposed to be in the Sobolev space $W_\text{loc}^{1,p} (\R^d)$ with $p>d$, and to have linear growth; for the drift coefficient $A_0$, we consider two cases: (i) $A_0$ is continuous whose distributional divergence $\delta(A_0)$ w.r.t. the Gaussian measure $\gamma_d$ exists, (ii) $A_0$ has the Sobolev regularity $W_\text{loc}^{1,p'}$ for some $p'>1$. Assume $\int_{\R^d} \exp\big[\lambda_0\bigl(|\delta(A_0)| + \sum_{j=1}^m (|\delta(A_j)|^2 +|\nabla A_j|^2)\bigr)\big] \d\gamma_d0$, in the case (i), if the pathwise uniqueness of solutions holds, then the push-f…

Discrete mathematicsPure mathematicsOrnstein–Uhlenbeck semigroupLebesgue measureSobolev space coefficientsProbability (math.PR)Density60H10 (Primary) 34F05 (Secondary) 60J60 37C10Density estimatePathwise uniquenessGaussian measureLipschitz continuitySobolev spaceStochastic differential equationStochastic flowsGaussian measureBounded functionFOS: Mathematics: Mathematics [G03] [Physical chemical mathematical & earth Sciences]Vector fieldUniqueness: Mathématiques [G03] [Physique chimie mathématiques & sciences de la terre]AnalysisMathematics - ProbabilityMathematics
researchProduct